

Ministerie van Economische Zaken en Klimaat

Delta Rhine Corridor

Cross-border infrastructure connecting supply and demand

Bas Pulles Project Director Delta Rhine Corridor

Agenda

Background and policy framework

2 Delta Rhine Corridor project

Recent Political Decisions

Challenges and opportunities

Next steps

Context

- Energy transition is crucial to achieving our climate goals.
- This means a transition to varying sources of energy such as offshore wind and solar energy, nuclear power or hydrogen, supported by carbon capture and storage.
 - 2030: 70% of electricity is green
 - 2030: 4GW of h2 production growing to 8 GW in 2032
 - 2030: 19 mton industrial CO2 emission reduction via CCS
- New forms of energy require a new system of installations, pipelines and cables. A new energy infrastructure.

Need for acceleration

- Hen-egg dilemma delays decisionmaking of parties involved: TSOs and (industrial) users.
- Need for government planning and coördination on energy infrastructure:
 - > Create more certainty on timely realization
 - Identify and prioritize energy projects of (inter)national importance
 - > Accelerate realization of those projects.
 - Reserve space in advance for essential infrastructure, such as electrolysers, hydrogen pipelines, electricity transformation stations.

Delta Rhine Corridor

- Pipeline infrastructure from Rotterdam to Chemelot with a connection to Germany via Venlo (or existing gas IPs)
- > Pipelines for hydrogen and CO2 and DC cables. Focus in Germany on hydrogen and CO2.
- > Consortium of Gasunie, Tennet, OGE, Shell and BASF
- Length: +/- 270 km in Netherlands and +/- 450 km in Germany
- > Planned startup end 2028 in The Netherlands
- > Spatial reservation in energy infrastructure corridors
- > Volumes (Mton in 2040)

	Netherlands	Germany
CO2	5,5	9,4
Ammonia	6,1	16,8
Hydrogen (year 2030, source social cost benefit analysis phase 1)	0,13	0,62

(source: draft social cost benefit analysis DRC)

Government support

- TSOs and private sector are project initiators and will build and operate pipelines and cables
- DRC public project department to help solve the hen and egg problem by acceleration of planning and realization.
- > 4 support tracks:
 - Spatial planning procedure under national supervision (Government Co-ordination Scheme)
 - Exploration of options for financial support
 - International collaboration
 - Internal policy advocay

Spatial planning in government coordination scheme

International collaboration

- Focus in Germany on H2 and CO2
- Set-up crossborder cooperation between authorities in both countries aimed at:
 - Political support (all levels)
 - Favourable policy conditions for H2 and CO2 (focus on federal level)
 - Alignment of planning (States North Rhine Westphalia and Rhineland Palatinate)
- Close cooperation with border region North Rhine Westphalia: regular high-level meetings to monitor progress

Recent political decisions

- Government decision on September 18:
 - Narrow support for scope of DRC to: hydrogen, CO2 and direct current. Leave out LPG, propene and natural gas.
 - Keep ammonia in the spatial planning process, to keep space for a future pipeline. Further develop a policy framework for ammonia transport.
- Explore options for crossing Hollands Diep, including financial mechanisms.
- Strengthen bilateral cooperation with Germany: first step is signing of Joint Declaration of Intent by the Netherlands and Northrhine Westphalia, with the aim to express bilateral support for the project,

Supply

chain

Challenges and opportunities

- Interaction pipelines and DC cables
- > Issuemanagement spatial planning energy infrastructure corridor
- Regional support
- > Business case leading to FID for individual pipelines
- Lack of ammonia policy and external safety framework

- > Decarbonization of industry through tailor-made approach
- Ramp-up European hdyrogen market (price, volumes and purity)
- Connecting CO2 storage facilities to inland industry (via Aramis)
- H2 import terminals, purchasing contracts (H2 Global) and cracking facilitiés

DRC

Next milestones

- Signing of Joint Declarations of Intent by King Willem Alexander in Northrine Westphalia in November 2023
- Spatial planning milestone
 [cNRD] expected Q1
- Government meeting on DRC progress in Q2
- Next steps in Germany:
 - Legal framework H2 and CO2
 - Start spatial planning procedures in Germany by OGE

Ministerie van Economische Zaken en Klimaat

More info?

<u>www.rvo.nl/onderwerpen/bureau-energieprojecten/lopende-</u> projecten/drc

b.c.m.pulles@minezk.nl

Thanks for your attention Bas Pulles